Growing Food Scrap Composting Capacity

Compost Site Operational Best Management Practices

James McSweeney 2022

Photo: Compost Now

Key Topics

- Compost Basics & Best Management Practices
- Adding Food Scraps as a Feedstock
- Scaling Up Food Scrap Composting Capacity

Considerations for Adding Food Scraps

Define motivations:

- ✓ Compost quality
- ✓ Environmental
- ✓ Public demand
- ✓ Policy
- ✓ Financial

- ~ 2 Million Tons Food Scraps Composted In US in 2014 (EPA, 2014)
- Massachusetts 5th highest number of composting facilities in US at 262 (BioCycle, October 2017) and the 6th highest number accepting food scraps (BioCycle, January 2019)

Think Big. Start Small.

Behavior change through education: Convergence of environmental and social justice concerns

- People don't understand that the impacts of their waste has dramatically unequitable impacts
- Environmental justice both local and global

Local Zero Waste Goals

Provide support and leverage

Why Compost?

The Compost Handbook (Rynk, 2022)

Table 1.1 Summary of the benefits and drawbacks of on-farm composting.

Economic benefits of composting and compost	Environmental benefits of composting and compost	Drawbacks
Revenue from processing or "gate" fees Revenue from compost sales Production of a useable product; reduced costs of substitute inputs Increase in crop yields and plant production and quality	Improved soil health and plant vigor Retention of soil nutrients Water conservation Plant disease suppression; reduction in pesticide use.	Upfront and sustained investments in time and money Land requirement (and possibly building space) Odor and other nuisance complaints Management in unfavorable weather
Generation of an animal bedding substitute	Erosion control	Diversion of manure and crop residues from crops if compost is sold off-farm
Destruction of weed seeds; reduce herbicide costs	Destruction of human, animal, and plant pathogens	Potential loss of nitrogen and generation of methane under anaerobic conditions
Reduction in waste disposal costs	Decomposition of hormones, antibiotics, and pesticides	Slow release of plant nutrients in finished product
Reduction in handling costs	Treatment of animal mortalities	Variable levels of plant-available nitrogen
Expansion of outlets for organic residuals	Lower environmental impacts from compost versus raw feedstocks	Zoning risk of being considered a commercial enterprise (rather than a farm)
	Reduction of greenhouse gas emissions	Need for environmental permits and adherence to regulations

Why Compost?

The Compost Handbook (Rynk, 2022)

Table 1.1 Summary of the benefits and drawbacks of on-farm composting.

Economic benefits of composting and compost	Environmental benefits of composting and compost	Drawbacks	
Revenue from processing or "gate" fees Revenue from compost sales Production of a useable product; reduced costs of substitute inputs Increase in crop yields and plant production and quality	Improved soil health and plant vigor Retention of soil nutrients Water conservation Plant disease suppression; reduction in pesticide use.	Upfront and sustained investments in time and money Land requirement (and possibly building space) Odor and other nuisance complaints Management in unfavorable weather	
Generation of an animal bedding substitute	Erosion control	Diversion of manure and crop residues from crops if compost is sold off-farm	
Destruction of weed seeds; reduce herbicide costs	Destruction of human, animal, and plant pathogens	Potential loss of nitrogen and generation of methane under anaerobic conditions	
Reduction in waste disposal costs	Decomposition of hormones, antibiotics, and pesticides	Slow release of plant nutrients in finished product	
Reduction in handling costs	Treatment of animal mortalities	Variable levels of plant-available nitrogen	
Expansion of outlets for organic residuals	Lower environmental impacts from compost versus raw feedstocks	Zoning risk of being considered a commercial enterprise (rather than a farm)	
	Reduction of greenhouse gas emissions	Need for environmental permits and adherence to regulations	

Why Compost?

The Compost Handbook (Rynk, 2022)

Table 1.1 Summary of the benefits and drawbacks of on-farm composting.

Economic benefits of composting and compost	Environmental benefits of composting and compost	Drawbacks	
Revenue from processing or "gate" fees Revenue from compost sales	Improved soil health and plant vigor Retention of soil nutrients	Upfront and sustained investments in time and money Land requirement (and possibly building space)	
Production of a useable product; reduced costs of substitute inputs	Water conservation	Odor and other nuisance complaints	
Increase in crop yields and plant production and quality	Plant disease suppression; reduction in pesticide use.	Management in unfavorable weather	
Generation of an animal bedding substitute	Erosion control	Diversion of manure and crop residues from crops if compost is sold off-farm	
Destruction of weed seeds; reduce herbicide costs	Destruction of human, animal, and plant pathogens	Potential loss of nitrogen and generation of methane under anaerobic conditions	
Reduction in waste disposal costs	Decomposition of hormones, antibiotics, and pesticides	Slow release of plant nutrients in finished product	
Reduction in handling costs	Treatment of animal mortalities	Variable levels of plant-available nitrogen	
Expansion of outlets for organic residuals	Lower environmental impacts from compost versus raw feedstocks	Zoning risk of being considered a commercial enterprise (rather than a farm)	
	Reduction of greenhouse gas emissions	Need for environmental permits and adherence to regulations	

Considerations for Adding Food Scraps

Identify and address risks right off the bat:

- ✓ Odors
- ✓ Vectors
- ✓ Contamination
- \checkmark Different economics
- ✓ Neighbor concerns
- ✓ MSW contract preclusions

Need Training and Education in Best Management Practices (BMPs)

- RecyclingWorks MA Compost Site Technical Assistance
- Facility Management Plans
- Intensive trainings
 - Maine Compost School (1 Week)
 - US Compost Council Composter Training Programs
 - The 131° School of Composting
 - Neighborhood Soil Rebuilders (ILSR)

(McSweeney, Community-Scaled Composting Systems, 2019 forthcoming)

Compost BMPs: Compost Recipe

Effective blending

- Protein w/ Carbon (C:N Ratio)
- Moisture w/ dry matter (Moisture Content)
- Dense material w/ bulking agent (Bulk Density)
- Analytically developed

1 Part High Nitrogen (Green) 1-2 Parts High Carbon (Brown)

1-2 Parts Neutral (Balanced C:N)

½-1 Part Bulking Agent (Porous)

Nitrogenous (<25:1 C:N) or Group II

Food scraps and grass have very similar C:N, moisture, and density

Recipe Neutral Materials (C:N 25-40:1)

- Ground mixed yard trimmings
- Leaves

Carbonaceous (C:N >40) & Porous (≥50% Voids)

• Chipped Christmas trees

Compost BMPs: Temperature Treatment

- Monitoring
- Turning

Pathogen Reduction Mechanisms

- Thermal destruction
- Production of toxic byproducts such as gaseous ammonia
- Competition between indigenous microorganisms and pathogens
- Antagonistic relationships between organisms
- Antibiotics produced by certain fungi and actinomycetes
- natural die-off in the compost environment (which is non-ideal for enteric (gut) pathogens)
- Nutrient depletion

Kristine Wichuck and Dary Mccartney. A review of the effectiveness of current time-temperature regulations on pathogen inactivation during composting. (Journal of Environmental Engineering and Science · August 2007).

FIGURE 8.4. Heat inactivation of Salmonella enteritidis serotype Montivideo in composted biosolids. (Data from Ward and Brandon, 1977.)

Process to Further Reduce Pathogens (*PFRP*) & National Organic Program (NOP) Standards

Turned Windrows

• **PFRP standard** is to turn pile <u>at least five</u> times while maintaining ≥131 Degrees F for <u>at least 15 days</u>

Aerated Static Pile or In-Vessel

• **PFRP requirement** *is that the material reaches* 131 *Degrees F or greater for a minimum of* 3 *days*

Key Factors to Ensure Pathogen Inactivation

- Institutionalize BMPs
- Track batches
- Consistent temperature monitoring
- (1' and 3', multiple points)
- Adopt maturity standard
- Prevent reintroduction of pathogens (keep high and dry)
- Maintain aerobicity (small pile sizes)
- Periodic testing

Compost BMPs: Moisture Management

Improved pad surfaces Graded Level Clean water diversion Clean pad Recipe 12

Compost BMPs: Vector Controls

- Immediate incorporation of food sources
- Cover piles (w/ compost & covers)
- Avoid odors
- Hit temps

Signs That There's A Problem

- Pile not heating
- Pile overheating
- Materials not breaking down
- Leachate
- Strong smells
- Increasing animal, bird, and insect populations
- Complaints
- Angry mobs on social media

Management Response

- Acknowledging issue
- Identifying root causes
 - Use monitoring
 - Review process (recipe, management, site conditions, etc)
 - Cross-check against other observations
- Evaluate response strategies
 - Varying degrees depending upon urgency and conditions
- A yard of prevention is worth a truckload of cure

Issues Compound: Dealing with root causes is key to successful remediation

Example: Wet pile conditions can create odors, which can attracts vectors

Management Response

Communicate with affected parties, neighbors, town, state

- Proactive communication
- Have strategy (written, i.e. Odor management plan)
- Be transparent
- Documentation

Monitoring Odor

What is Odor?

Unpleasant fragrance caused by volatilized chemical compounds:

- Volatile Organic Acids (Rotten, acrid, garbage)
- Ammonia (Chemical, eyes water)
- Sulfur Dioxide (Vomit smell)
- Mercaptans (Bad breath, rotten cabbage)

Monitoring Odor

What is Odor?

- Think of odor as food for microbes
- Contain odor and create conditions where aerobic microbes thrive
- Odors are typically high N (ammonia and organic acids), and therefore have valuable nutrient value

Identified Issue	Cross-Check	Root Causes	Remediation Actions	Preventative Actions
Anaero pile condition Problem Odor Leacha from pil		High moisture content (Lack of moisture in original recipe)	Blend in dry matter	Adjust recipe to lower
			Decrease pile size	moisture content Construct smaller piles
			Turn pile to dry	
	Anaerobic pile conditions?	Dense pile conditions (Lack of large structural particles in original recipe and/or Infrequent turning/mixing)	Blend in porous bulking agents (wood chips, grindings)	Adjust recipe to add porosity (5-15% woody chip/grindings by volume)
			Turn pile to loosen and aerate	Ensure thorough blending
				Turn more frequently
		Large piles inhibiting passive aeration.	Decrease pile size	Construct smaller piles
	Leachate from pile?	High moisture conditions	Absorb leachate with dry carbonaceous materials	Maintain pile moisture in target range.
				Ensure site infrastructure creates adequate drainage.

5.0 Problem Odor - Anaerobic Conditions, Leachate
Identified Issue	Cross- Check	Root Causes	Remediation Actions	Preventative Actions	
Problem Odor		High protein	If odor is not controlled after capping, then remediate recipe with carbon materials and bulking agent.	Develop targeted recipe for problem feedstock. Significant sources of available carbon and porous bulking agents will be needed.	
		High moisture	If odor is not controlled after capping, then remediate recipe with dry matter and bulking agent.	Develop targeted recipe for problem feedstock. Dry matter and porous bulking agents wil be needed.	
	Problem feedstock?	Low or high pH	If odor is not controlled after capping, then remediate recipe moisture content and density, then leave unturned until pH is buffered by composting process.	Control carbon to nitrogen ratio and moisture content to minimize high protein (N), high moisture, and low pH conditions or high protein (N), low moisture, and high pH conditions.	
		Specifically challenging compounds or feedstock	Find technical support if	Use lab testing of feedstocks to develop targeted recipe for problem feedstock.	
			traditional odor management techniques fail.	Trial feedstock on a small scale before introducing a large volume to the composting operation.	

5.1 Problem Odor - Problem Feedstock

5.2 Proble	m Odor - \	Weather	Factors
------------	------------	---------	---------

Identified Issue	Cross- Check	Root Causes	Remediation Actions	Preventative Actions
Problem Odor	Wind direction?	Strong odors escaping piles are likely to travel off-site.	Use cross-checks to implement immediate odor remediation to	Observe wind and odor generation patterns to minimize turning and avoid odor release coinciding with wind transport in directions of receptors.
			plies (Tables 1.0-1.1)	Install a weather station or windsock to monitor wind direction.
	Air inversion?	Normal air movement patterns are stagnant, trapping odors low to the ground, and magnifying nuisance potential.		Minimize turning in morning and evening when ground level inversions are common.
			Use cross-checks to implement immediate odor remediation to piles (Tables 1.0-1.1)	Observe weather and odor generation patterns to minimize turning and avoid odor release coinciding with inversion conditions.
				Understand topological factors such as air drainages that can move and trap odors.

Odors = Emotion

- Brain processes smell in the limbic system
 where it also processes emotion
- Neuro-science has found processing of olfactory information to be highly emotional

Odors = Emotion

- Occurs in the portions of the limbic system that process negative emotions, rather than positive ones.
- In dealing with odors, remember people can become emotionally charged. Your job is to relieve tension.

Public Education Around Contamination

Largest touchpoint for the creation of a culture composting

Compost BMPs: Housekeeping

- Aesthetics matter! People smell w/ their eyes
- Remove trash
- Organized space
- Minimally crowded

Compost BMPs: Compost Maturation

- Earthy smell
- Friable
- Temps below 100 F
- O₂ demand, CO₂ & N₂O production minimal (test)
- Alive!

Minimize Neighbor

Many environmental/nuisance problems associated with composting facilities can be avoided with proper facility site identification, planning, and outreach.

Considerations for Adding Food Scraps

Infrastructure to fit the realities:

- \checkmark Composting method
- ✓ Manage process water
- ✓ Improved surfaces
- ✓ Access
- ✓ Covered areas

Common Composting Methods

Furned Windrows

Site Components: Feedstock Storage

In need of repair

New on-farm shed

Industrial site

Site Components: Receiving and Blending Areas

In need of repair

On-farm tipping dock and blending area

Municipal site

Site Components: Primary Composting Area

Micro-scale

Blower & four channel ASP manifold Highest level of process control

Site Components: Secondary, Finishing, Curing, and Storage

Secondary & finishing

Vegetated swale

Curing and storage

Site Components: Secondary, Finishing, Curing, Storage, and post processing

Covered blending and primary

Covered storage and screening

Protecting Water Resources

Maximize distance to surface waters, wetlands, wells, seasonally high groundwater and bedrock (minimum setbacks meet local and state regulations)

Site Components: Leachate and Process Water Catchment and Treatment

Pre-treatment (compost sock)

Leachate and process water to vegetative treatment (organic hay)

Process water catchment pond (large facility)

- Improved surfaces
 - Mixing areas
 - Compost pads
 - Access roads

Considerations for Adding Food Scraps

Human and physical capacity:

- ✓ Labor
- ✓ Sized system
- ✓ Pilots

Bonuses, balance and respect: What will it take to attract more waste and recycling job applicants?

Industry employers Republic, Casella and WIN Waste, among others, talked through the do's and don'ts of job postings, hiring processes and creating attractive workpla during recent SWANA events.

Published March 7, 2022

Food waste is year round

- Continuous labor requirements vs seasonal fluctuation with yard trimmings
- Cons and also pros

Site Capacity

Potential Throughput

Available (Local) Capacity

>

The Throughput vs Efficiency Paradox

Raw Organics In

Stable Compost Out

Think Big. Start Small. (With Pilots).

Make small mistakes not big ones

Build community trust and support

Get to know what you don't know you don't know

Bottlenecks & Barriers to Expansion

- Compost Markets Often under resourced/under prioritized
- Labor
- Capital for expansion
- Permitting and regulatory constraints
- Space (equal to processing time)

Where Operations Can Gain Efficiency: Pre- & Post-Processing

Area of Efficiency Gain/Loss

Technique/Strategy	Spatial	Processing Time	Labor	Cost of Implementation
Compost Drying	+	+	+	\$-\$\$\$
Physical Contaminant Prevention + Removal	+		+	\$-\$\$\$\$
Bokashi (Fermentation)	+	+	+/-	\$\$
Pre-Composting Feedstocks	+/-	+	+	\$\$
Moisture Reduction	+	+/-	+	\$\$\$\$
Particle Size Reduction	+	+	+/-	\$\$\$\$

+ = Increased Efficiency

+/- = It Depends or No Change

- = Decreased Efficiency

Where Operations Can Gain Efficiency: Compost Method

	Area	of Efficiency Gai		
Technique/Strategy	Spatial	Processing Time	Labor	Cost of Implementation
Aerated Static Pile Composting	+	+	+	\$-\$\$\$
Vermicomposting	-	+	-	\$-\$\$\$\$
Windrow Turner	+	+	+	\$\$-\$\$\$
In-Vessel Composting	+	+	+	\$\$\$\$

Increased

+ = Efficiency

It Depends or

+/- = No Change

Decreased

- = Efficiency

Where Operations Can Gain Efficiency: Management Practices

	Area o	f Efficiency Gai			
Technique/Strategy	Spatial	Processing Time	Labor	Cost of Implementation	
Larger Piles	+	+/-	+/-	\$	Adds Risk
Target C:N at 25:1	+	+	+	\$	Adds Risk
Maximize Biologically Available Carbon (Low + Neutral C:N Feedstocks)	+	+	+	\$	Adds Risk
Temperature Optimization (120-140° F)	+	+	+	\$	
Reusing Compost as Feedstock	+	+/-	+/-	\$	
Recycling Overs as Feedstock	+	+	+	\$-\$\$\$	
Increased Turning Frequency	+/-	+	+/-	\$\$	Adds Risk
Material Consolidation	+	+/-	-	\$\$	
Bays (vs Windrows)	+	+/-	+/-	\$\$\$	

+ = Increased Efficiency

It Depends or No

+/- = Change

- = Decreased Efficiency

Where Operations Can Gain Efficiency: Infrastructure

	Area			
Technique/Strategy	Spatial	Processing Time	Labor	Cost of Implementation
Improved Pad Surfaces	+	+	+	\$\$-\$\$\$\$
Covered Structures	+	+/-	+	\$\$\$\$

Increased + = Efficiency

It Depends or +/- = No Change

> Decreased - = Efficiency

For Yard Trimmings Facilities

https://wastedfood.cetonline.org/C ommunity-Toolkit-Yard-Trimmings-Food-Scraps

COMMUNITY TOOLKIT:

Adding Food Waste to a Yard Trimmings Compost Facility

SECTIONS:

I. Why Do You Want to Compost Food Waste? II. Is Your Yard Trimmings Composting Site Food Waste Ready? III. Best Practices to Compost Food Waste IV. Food Waste Collection & Hauling Considerations V. Food Waste Composting Regulatory Requirements (State, Local) VI. Types of Food Waste to be Composted VII. Costs and Economic Considerations VIII. Compost Markets IX. Final Takeaways

A how-to and why manual for farm, municipa institutional and commercial composters

EDITED BY **ROBERT RYNK WITH** GINNY BLACK JOHANNES BIALA JEAN BONHOTAL LESLIE COOPERBAND JANE GILBERT MARY SCHWARZ

On-Farm Composting Handbook

NRAES-54

FIELD GUIDE TO ON-FARM COMPOSTING

COMPOST UTILIZATION

HORTICULTURAL CROPPING SYSTEMS

in

Edited by

Peter J. Stoffella Brian A. Kahn

Special Indian Edition

THE SCIENCE OF COMPOSTING

Eliot Epstein

COMMUNITY-SCALE COMPOSTING SYSTEMS

A Comprehensive Practical Guide for Closing the Food System Loop and Solving Our Waste Crisis

APPENDING A 7

Free Online Resources

- Guide to Agricultural Composting. MDAR. 2010 <u>http://www.mass.gov/eea/docs/agr/programs/compostguidetoagco</u> <u>mposting2011.pdf</u>
- Vermont Agency of Natural Resources Composter Resources Developed by CTS. Site Planning & Management, School Composting, School Curriculums <u>https://dec.vermont.gov/waste-management/solid/materials-mgmt/organic-materials</u>

Free Online Resources

- RecyclingWorks Source-Separation BMPs: <u>http://www.recyclingworksma.com/local-health-department-guidance-for-commercial-food-waste-separation/</u>
- MassDEP:

http://www.mass.gov/eea/agencies/massdep/recycle/reduce/com posting-and-organics.html

- Institute for Local Self-Reliance: <u>https://ilsr.org</u>
 - Yes! In My Backyard: A Home Composting Guide for Local Government
 - Growing Local Fertility: A Guide to Community Composting
 - Pay Dirt
- The Composting Collaborative:

https://www.compostingcollaborative.org

Free Webinars and How-To Videos

- Institute for Local Self-Reliance: <u>https://ilsr.org/tag/webinar/</u>
- The Composting Collaborative: <u>https://www.compostingcollaborative.org/resource-</u> <u>category/webinar/</u>
- Highfields Center for Composting Video Series Recipe Development, Pile Monitoring & Turning, School Training – <u>https://vimeo.com/highfieldscomposting</u>

Need Training and Education in Best Management Practices (BMPs)

- RecyclingWorks MA Compost Site Technical Assistance
- Facility Management Plans
- Intensive trainings
 - Maine Compost School (1 Week)
 - US Compost Council Composter Training Programs
 - The 131° School of Composting
 - Neighborhood Soil Rebuilders (ILSR)